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We report an experimental study of traveling-wave convection patterns in a binary mixture of ethanol and
water. We survey the patterns observed in a large aspect ratio cylindrical container over a broad range of
Rayleigh numbers. It is found that disordered patterns observed immediately after traveling-wave convection is
initiated evolve toward organized multidomain patterns and that the nature of the multidomain patterns de-
pends on the Rayleigh number. A numerical algorithm for extracting the complex order parameter from
traveling-wave patterns and measuring their dynamical properties is described. This technique is used to
characterize the dynamic aspects of traveling-wave convection patterns observed near the saddle node bifur-
cation. It is shown that the instantaneous rate of deformation of the pattern can be determined, and use of this
information as a point of comparison with model equations is discussed. The joint wave number, frequency
distribution for traveling-wave patterns is calculated and is shown to be significantly different from the dis-
persion curves previously obtained from one-dimensional traveling-wave convection patterns.@S1063-
651X~96!07705-7#

PACS number~s!: 47.54.1r, 47.55.Hd, 47.27.Te

I. INTRODUCTION

Rayleigh-Bénard convection is perhaps the most widely
studied example of a nonequilibrium pattern-forming system
arising from a finite wave number instability because the
underlying physical mechanisms are well understood, the ex-
perimental conditions can be precisely controlled, and a great
variety of phenomena can be observed@1#. Convection in
pure fluids, not driven too far beyond the onset of convec-
tion, is amenable to theoretical analysis, and a fairly satisfac-
tory understanding of pattern forming issues has been
achieved. In this case, the instabilities are stationary and to
some approximation the pattern evolves toward an optimum
configuration@2#. This relaxational character of pure fluid
convection patterns is reflected in the fact that the model
equation that is most frequently applied to this regime of
convection, the Swift-Hohenberg equation, has a Lyaponov
functional that decreases with time. This functional can be
interpreted as an effective free energy that is minimized for a
stable pattern@3#. Departures from this relaxational paradigm
are observed under special circumstances. For instance, it has
been found that in cases where the boundary conditions are
inconsistent with the preferred straight roll configuration,
persistent time dependence of the pattern can occur@4,5#.
Intrinsic instabilities of the patterns, or intensely chaotic be-
havior, such as spiral chaos, is generally observed only at
higher Rayleigh number, especially in low Prandtl number or
non-Boussinesq fluids@6–8#.

The situation for convection in a binary mixture of etha-
nol and water is very different. Over a wide range of param-
eters, the onset of convection is a subcritical Hopf bifurca-
tion to a state of oscillatory convection@9#. Near onset, the
weakly nonlinear oscillatory convection can exhibit chaotic
dynamics, including repeated growth and collapse of the
convective amplitude@10,11#, dispersive chaos@12#, and for-
mation of localized states in one or two dimensions@13–16#.
If the Rayleigh number is set above the onset value, the
oscillatory convection grows in amplitude until it reaches a

strongly nonlinear state of continuously overturning convec-
tion in which the rolls propagate slowly with a well defined
phase velocity@17#. We refer to this state as traveling-wave
~TW! convection.

In one-dimensional geometries, the TW state exhibits
some of the same behavior that characterizes the weakly
nonlinear state, such as wave number instabilities@18# and
confined states of convection@19#. In two dimensions,
traveling-wave convection patterns typically consist of sev-
eral competing domains of traveling waves propagating in
different directions. In contrast to the case of stationary con-
vection, the dynamics of the traveling-wave patterns are not
relaxational and the point defects that are important in sta-
tionary convection patterns give way to slowly moving do-
main walls between competing patches of traveling waves.
The model equations that are usually applied to this system,
such as complex generalizations of the Swift-Hohenberg
equation, are not relaxational@20,21#.

In this paper, we describe an investigation of traveling-
wave convection patterns in a container with a large aspect
ratio. We describe disordered patterns in which most of the
area of the pattern evolves independently of the cell bound-
ary, as well as ordered multidomain patterns in which the
geometry of the cell boundary is a stronger influence. We
present a survey of the traveling-wave convection patterns
observed over a broad range of Rayleigh numbers and we
describe an analysis technique that allows us to obtain the
complex order parameter from the experimental convection
patterns. This approach allows us to obtain all of the impor-
tant dynamical properties of the pattern and it is suitable for
direct comparison with model equations. Finally, we make
use of this technique to give a detailed treatment of the dy-
namical properties of traveling-wave convection patterns at
low Rayleigh number.

II. BINARY FLUID CONVECTION

In Rayleigh-Bénard convection, a thin layer of fluid, con-
fined between two flat thermally conducting plates, is heated

PHYSICAL REVIEW E JUNE 1996VOLUME 53, NUMBER 6

531063-651X/96/53~6!/5916~19!/$10.00 5916 © 1996 The American Physical Society



from below so that a fixed temperature differenceDT is
maintained between the upper and lower boundaries. For the
usual case of positive thermal expansion coefficient, an un-
stable density gradient develops as the temperature differ-
ence is increased and the fluid layer becomes unstable to a
convective flow, which results in enhanced heat transport.
The onset of convection involves the interplay of buoyancy,
viscous damping, and thermal diffusion and is determined by
the Rayleigh number

Ra5
agh3DT

kn
, ~1!

whereh is the cell height,a is the thermal expansion coef-
ficient, g is the acceleration of gravity,k is the thermal dif-
fusion constant, andn is the viscosity@22#. In the following
sections we will refer to the reduced Rayleigh number
r5Ra/1708, which is normalized by the onset Rayleigh
number of an infinitely wide layer of pure fluid. It is also
necessary to specify the Prandtl number

Pr5
n

k
, ~2!

which determines the onset of secondary instabilities and
influences the nature of convection patterns.

The binary fluid system falls into the class of double-
diffusive convection systems in which there are two buoyant
species, in this case heat and solute, which diffuse through
the liquid and are advected by the velocity field. In systems
where two buoyant species diffuse independently, such as
double diffusive convection of two solutes@23#, the system
is described by two independent forcing parameters corre-
sponding to the applied concentration gradients of the two
species. In the ethanol-water system, the boundaries are im-
permeable to both components of the fluid and a concentra-
tion gradient cannot be externally imposed. Instead, an eth-
anol concentration gradient is driven by the temperature
gradient and the system is described by a single forcing pa-
rameter, the Rayleigh number, and a coupling between the
temperature and concentration fields. The transport of etha-
nol in the fluid is governed by

j c52Dc“c1DcStc~12c!“T1uc, ~3!

wherej c is the ethanol flux,Dc is the mass diffusion coeffi-
cient,c is the concentration of ethanol,u is the velocity field,
andSt is the Soret coefficient@24#. The first and third terms
on the right-hand side are the ordinary diffusion and advec-
tion terms, but the term proportional toSt indicates that an
ethanol flux arises from a temperature gradient, which, in our
case, drives ethanol toward the colder regions of the cell. The
corresponding term in the heat transport equation, in which a
heat current is driven by the concentration gradient~the Du-
four effect!, is negligible in ethanol-water mixtures.

Two additional parameters are required to describe the
binary fluid system. The separation ratio is the temperature-
concentration coupling parameter and is defined by

c52c~12c!St
b

a
, ~4!

where b is the concentration expansion coefficient. The
separation ratio indicates the extent to which the density of
the fluid is stratified by the concentration field arising from
the imposed temperature difference. In the present experi-
ment,c is negative, indicating that the density gradient as-
sociated with the concentration field opposes the thermal
density gradient and tends to stabilize the fluid layer against
the onset of thermal convection. The Lewis number

L5
Dc

k
, ~5!

whereDc andk are the mass and thermal diffusion coeffi-
cients, gives the ratio of the time scales associated with mass
diffusion and thermal diffusion. The onset of convection is
oscillatory for smallL and for sufficiently negative values
of c @26#.

The Lewis number for ethanol-water mixtures is approxi-
mately 1022, so that concentration fluctuations are much
longer lived than thermal fluctuations. For this strong sepa-
ration of time scales, an oscillatory onset of convection is
observed for all measurablec,0. The experiments de-
scribed below are performed with a mixture of 8% ethanol
~by weight! in water at an average temperature of 26 °C.
This mixture has a Prandtl number of 10.5, which is roughly
twice that of water at the same temperature, and has a sepa-
ration ratio of20.24, which is the largest negative value
possible at this temperature@25#.

A schematic representation of the bifurcation diagram is
shown in Fig. 1. The large negative separation ratio of the
8% ethanol mixture leads to a strong suppression of the onset
of convection r co. The onset is strongly subcritical, and
above r co, convection quickly grows to a large amplitude
TW state that is stable over a broad range of Rayleigh num-
bers. As r is increased further abover co, the TW phase
velocity decreases, becoming zero atr !, where a transition
to stationary overturning convection occurs@27#. When the
system is in the TW state andr is decreased belowr co, the
TW velocity increases until a saddle node bifurcation is
reached atr s and the finite amplitude convection state
abruptly disappears. In the experiments described below, the
measured values for the transition Rayleigh numbers are
r co51.40, r !51.58, andr s51.23, so that traveling-wave

FIG. 1. Schematic bifurcation diagram for convection in a pure
fluid and in a binary mixture with negative separation ratio. In the
mixture, the heavy solid line indicates traveling-wave~TW! con-
vection and the heavy dashed line indicates stationary overturning
convection~SOC!.
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convection can be observed for 1.23,r,1.58. The tempera-
ture difference at onset is approximately 1.7°C and the
Boussinesq approximation is valid. The relevant fluid param-
eters area53.1931024 K 21, k51.2931023 cm2/sec, and
n51.1831022 cm2/sec.

The data shown below are normalized to the characteristic
time and distance scales in the system. Distances are normal-
ized to the cell heighth50.4 cm, which sets the width of a
convection roll, and time intervals and frequencies are ex-
pressed in terms of the vertical thermal diffusion time
tk[h2/k5124 sec. This is the most important time scale in
the system, although the dynamical properties can also have
a weak dependence on the Prandtl number. Other interesting
time scales are the vertical viscous dissipation time
tn[h2/n511.8 sec and the vertical mass diffusion time
tc[h2/Dc'12 000 sec. The measured period of the Hopf
bifurcation is tH'75 sec and the measured period of the
traveling-wave state at the saddle node ists'210 sec.

III. APPARATUS

The convection cell used for the experiments described
below is a standard design consisting of an electrically
heated bottom plate and a sapphire top plate that is cooled by
a temperature regulated water flow bath. A window in the
flow channel provides optical access for visualization of the
convection cell through the bath. The cylindrical convection
container has a diameter of 21 cm and a height of 0.4 cm,
giving an aspect ratio (G5r /h) of 26.

For the bottom plate, we have adopted the polished silicon
mirror employed in convection experiments by Kolodner
@28#. The experiment described here uses a 1.91-cm-thick
polycrystalline silicon disk that is mirror polished to a flat-
ness of one wavelength per inch. The thermal conductivity of
the silicon plate is 1.5W/cm K, which is a factor of 2.5
smaller than copper, and the reflectivity of silicon is some-
what low at;60%. However, silicon has several advantages
over the more commonly used plated copper mirrors, which,
in our view, override the disadvantages. Silicon does not
react with water and requires no coating. Although silicon is
brittle, it is very hard and plastic deformation of the mirror is
negligible. In contrast to rhodium or gold-coated copper mir-
rors, which have been used in past experiments, we have
found no degradation of the mirrored surface after more than
one year’s exposure to the working fluid.

The configuration of the convection cell is represented
schematically in Fig. 2~a!. The upper boundary of the cell is
a single-crystal sapphire disk of thickness 1.02 cm, which is
also polished to flatness of 1 wavelength per inch. The sepa-

ration of the top and bottom plates is set by 12 finely ground
glass spacers and the uniformity of spacing between the up-
per and lower cell boundaries is measured by interferometry
using a helium-neon laser. The uniformity of spacing is ap-
proximately one wavelength per inch. The working fluid is
confined by an o-ring seal between the side surface of the
sapphire and the stainless steel flow channel and by an o-ring
seal between the side of the silicon plate and an ULTEM
plastic holder, which is bolted and o-ring sealed to the un-
derside of the flow bath. Fluid is introduced into the convec-
tion cell through holes in the upper part of the bottom plate
holder. ULTEM was chosen for mounting the bottom plate
because it has acceptable mechanical properties, good chemi-
cal stability, and a low thermal conductivity, which mini-
mizes heat leaks between the top and bottom plates. The
boundary of the cell is a 0.3-cm-thick fin that is machined as
an integral part of the ULTEM bottom plate holder, provid-
ing an unforced boundary condition.

The convection cell is positioned so that the sapphire top
plate is flush with the flow channel and the flow of cooling
water over the cell is not disrupted. During assembly and
filling of the cell, the upper plate is held against the lower
plate by a rubber gasket pressed under a stainless steel ring,
but this is removed after the cell is filled. During experiments
the sapphire is held in place by the compressed o ring and
the pressure in the flow channel above. The cell is filled by
evacuating the convection cell using a mechanical vacuum
pump and allowing the degassed ethanol-water mixture to be
drawn into the evacuated volume. Thermal expansion of the
convecting fluid is accommodated by a small stainless steel
expansion bellows coupled to the fluid volume.

The main technical difficulty in this experiment is main-
taining a constant and uniform Rayleigh number across the
large convection cell. Uniform heating of the bottom plate is
achieved using an array of film heaters, as shown in Fig.
2~b!. The heaters are connected in parallel and nominally
configured for uniform heat delivery, but variable shunt re-
sistors are installed on the individual segments to make small
corrections as described below. Achieving uniform cooling
of the top plate by the flow bath is more difficult in view of
the rather large area of the convection cell and because of the
large heat flux, which can reach 50 W for typical experimen-
tal conditions.

A technique frequently used with cylindrical convection
cells is to install a flow manifold or array of jets, so that
water rushes in from around the edge of the convection cell
and flows toward the center, before making its way to an
exhaust manifold. This arrangement was used in a prelimi-
nary version of our experiment, but it was found that more
uniform cooling could be achieved using a linear channel
flow across the top plate. In both configurations there are two
main problems. The first is that the temperature of the cool-
ing water increases as it flows over the convection cell and
collects heat. The second and, in our experience, the more
severe problem is that the cell is less efficiently cooled where
the flow is less vigorous or where closed eddies form. In the
case of the circularly symmetric flow there is inevitably a
turbulent stagnation point over the center of the cell and the
detailed flow is very complex and difficult to characterize. In
contrast, the linear channel flow is simple and relatively ef-

FIG. 2. ~a! Schematic diagram of the convection cell seals and
boundary configuration.~b! Three segments of the film resistor used
to heat the bottom plate.
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ficient in transporting heat away from the convection cell.
The linear flow channel, shown in Fig. 3, is designed to

have a high Reynolds number where the flow passes over the
convection cell. Water enters the channel through eight 0.5-
in.-diam pipes that are fed by two 38 liter/min magnetically
coupled pumps, each of which feeds four inlets to the flow
channel. After flowing 24 cm along the 3.2-cm-high, 30-cm-
wide channel, the flow is confined to a 0.7-cm-high channel
by an internal baffle as it passes over the convection cell. By
repositioning the baffle, the geometry of the channel can be
varied without requiring significant modification of the flow
channel. The Reynolds number for the channel flow above
the convection cell is estimated to be*23104. Turbulence
in this relatively high Reynolds number flow causes intense
vertical mixing in the fluid that efficiently moves heated wa-
ter away from the upper surface of the convection cell.

In order to measure the temperature uniformity, the con-
vection cell was partitioned into seven identical subcells by
placing seven glass rings having a height of 0.375 cm and an
inner diameter of 3.8 cm in the convection container. Six of
the subcells were placed around the perimeter and one was
placed at the center of the main convection cell. By slowly
increasing the Rayleigh number abover co and watching the
onset of convection in the individual subcells, we could mea-
sure the nonuniformity in the temperature difference with a
sensitivity of about 1 mK. An important advantage of this
technique is that it directly measures the Rayleigh number in
the convection cell itself and includes all effects that influ-
ence the experiment, such as nonuniformities in heating or
cooling and heat leaks to the room or between different com-
ponents of the apparatus.

When uniform heating was applied to the bottom plate,
we found that the temperature difference across the fluid
layer was approximately 30 mK larger at the center of the
cell than at the edges. Since the linear flow of cooling water
across the top of the convection cell cannot produce a radial
temperature gradient on the top plate, our interpretation is
that a small heat leak from the bottom plate to the flow bath
through the mounting hardware created a nonuniform tem-
perature distribution on the bottom plate. This temperature
inhomogeneity was eliminated by reducing the heating

power of sector 1 of the heater@see Fig. 2~b!# by approxi-
mately 5%.~Because of the high thermal conductivity of the
silicon bottom plate, the effect on the fluid layer is much
smaller.! After this correction was applied, a 12-mK tem-
perature difference between the areas corresponding to the
leading edge and the trailing edge of the cooling flow was
observed. This nonuniformity was suppressed by increasing
the heat flux to sector 3 of the heater, which corresponds to
the trailing edge of the cooling flow, by approximately 0.5%.
After this compensation was applied, no nonuniformity was
observed. To summarize, we measured a 12-mK peak-to-
peak variation in the absolute temperature distribution on the
top plate of the cell, corresponding to a 0.7% variation in the
Rayleigh number at onset. By matching the bottom plate
temperature distribution to the top plate distribution, we es-
timate that the variation in the Rayleigh number was reduced
by at least a factor of 4, so that the data presented below
were taken with an 0.2% p.-p. variation in Rayleigh number
at onset.

The top plate temperature is held constant by a Poly-
Science programmable circulating flow bath and monitored
by thermistors in the flow channel. The bottom temperature
is controlled by a servo-loop based on an ac resistance bridge
that is sensitive to the resistance of a thermistor embedded in
the bottom plate. The reference for the ac bridge is provided
by a six digit computer controlled variable ratio transformer,
which is used for computer control of the Rayleigh number.
Using a combination of analog feedback and computer servo
control, the fluctuation in the Rayleigh number is approxi-
mately 2-mK rms.

The patterns are visualized by white light shadowgraph.
The large aperture of the cell makes the typical refracting-
optic shadowgraph configuration inconvenient. Instead, a re-
flecting optic design is used that employs a parabolic reflec-
tor having a 2 mfocal length as the main focusing element
@29#. Numerical simulations of the system and calibrations
indicate that the distortions of the image are less than 1%.

The experiment is controlled using aC language com-
puter program that executes predefined temperature proto-
cols, which may be modified during the course of a run. The
images are recorded using a Sony model SSC-M370 charge
coupled device camera and digitized to eight-bit resolution
using a personal computer frame grabber. A Sony EVT-820
time lapse video cassette recorder is also used to monitor the
long-term evolution of patterns. The process control program
displays the status of the experiment, including the current
image, temperatures, Rayleigh number, and protocol status.
The images, along with associated temperature data, are
stored in binary computer files for further analysis on a
UNIX work station, as described below.

IV. SURVEY OF TRAVELING-WAVE PATTERNS

While traveling-wave convection patterns have been ob-
served and studied in previous experiments on convection in
ethanol-water mixtures, these experiments had a smaller as-
pect ratio than the present experiment and the patterns ob-
served were strongly influenced by the system boundary
@9,16#. As discussed below, in the larger aspect ratio system
disordered states consisting of many small domains of trav-
eling waves can be created in which a significant fraction of

FIG. 3. Schematic diagrams of the cooling flow channel above
the convection cell;~a! above view and~b! cross-sectional view.
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the area of the pattern does not appear to interact with the
cell boundary. Over time, the size of the domains increases
until the mean domain size is of the order of the size of the
container and the boundaries again become a significant in-
fluence. In this latter regime, the patterns typically consist of
three or four domains of traveling waves, separated by well
defined domain boundaries, and it is the dynamics of these
domain boundaries that appears to control the evolution of
the patterns.

A. Disordered states

Traveling-wave convection patterns may be created using
a variety of protocols, all of which lead to disordered initial
states. Whenr is slowly raised above the onset valuer co,
small amplitude oscillatory convection is first observed. As
the convection amplitude grows the oscillation frequency de-
creases from the Hopf frequency to the traveling-wave fre-
quency and the pattern breaks up into small patches of large
amplitude traveling waves that quickly fill the convection
cell. An alternate protocol is to setr abover ! and allow a

stationary convection pattern to develop, before settingr to a
value on the traveling-wave branch. Whenr is reduced to a
value belowr !, the stationary convection rolls begin moving
in one direction or another and again small patches of trav-
eling waves are created. In either case, after about 30tk
~wheretk is the characteristic vertical thermal diffusion time
of 124 sec! the pattern evolves to a state of spatiotemporal
disorder whose character depends on the Rayleigh number
but is not very sensitive to the method by which the state was
initiated. In general, the disorder is most intense for Rayleigh
numbers nearr s , where the traveling-wave velocity is high-
est, and less intense at higher values of the Rayleigh number.

Figure 4 shows an example of the evolution of a disor-
dered state, created by a sudden decrease of Rayleigh num-
ber from 1.9 to 1.28, a value just abover s , where the most
disordered patterns occur. Figure 4~a! shows the pattern
30tk after the change of Rayleigh number, when the spa-
tiotemporal disorder is at its maximum. The pattern is com-
posed of small patches of traveling waves, what we might
characterize as ‘‘billowing structures’’~visible in the figure
as semicircular arches! and cross-roll patches, in which a

FIG. 4. Raw images of disordered convection patterns observed in the 21-cm-diam convection cell after a sudden decrease from
r51.9 to r51.28: ~a! after 30tk , ~b! after 230tk , ~c! after 550tk , and ~d! after 680tk , wheretk is the characteristic vertical thermal
diffusion time of 124 sec.
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small area of the pattern alternates between two mutually
orthogonal sets of standing waves at a frequency slightly
lower than the traveling-wave frequency. The convection
rolls tend to be aligned perpendicular to the unforced bound-
ary of the cell and this seems to impose some order on the
peripheral regions of the pattern, so that the most intense
disorder occurs near the center of the cell. This state of spa-
tiotemporal disorder does not sustain itself indefinitely.
Gradually, the pattern evolves toward a state that is more
ordered, although the mechanism by which this occurs is
hard to define.

In Fig. 4~b! the pattern is shown at 230tk . Some areas of
the pattern remain highly disordered, while several domains
of fairly well organized waves can be seen forming on the
right boundary of cell. In Fig. 4~c!, recorded at 550tk , the
trend observed in Fig. 4~b! has continued; curved rolls have
invaded most of the cell. On the right-hand side of the pat-
tern, a billowing structure, similar to the ones in Fig. 4~a!, is
forming. As time proceeds, this structure expands and causes
a partial relapse into disorder. In Fig. 4~d!, recorded at 680
tk , disorder has increased dramatically on the left-hand side
of the cell, but a source on the lower right boundary has
begun launching well organized straight rolls into the pattern
that appear to sweep the disorder away. This effect is similar
to the mechanism proposed by Aranson, Levine, and Tsim-
ring @30# for the stabilization of chaotic spatiotemporal pat-
terns in systems with a convective instability. In their sce-
nario, a source emitting stable waves can eliminate
spatiotemporal chaos by sweeping chaotic fluctuations to the
system boundary. In our experiment, however, the source
itself is not stable, as is evident from the fact that the waves
in the immediate vicinity of the wall are beginning to break
up. As this pattern develops, the nearly straight rolls continue
to sweep across the cell, but the disorder is again partially
renewed as defects appear within the straight rolls, creating
more of the billowing structures seen in Fig. 4~a!.

The evolution of the pattern from the disordered initial
state to an ordered final state is a sequence of advances and
relapses, in which progressively larger domains of traveling
waves invade the pattern, sometimes breaking down into
smaller domains. The configuration that ultimately results,
typically after evolution at constant Rayleigh number for at
least 23103tk , is a pattern composed of several well de-
fined domains of traveling waves. Invariably, this multido-
main state has an overall sense of rotation in which the rolls
in each of the domains are moving in the same direction
around the perimeter. This is probably related to the instabil-
ity of sources mentioned above, since a domain of traveling
waves moving in a direction counter to its neighboring
patches must result in a source and a sink of waves at the cell
boundary. Although mature multidomain patterns are stable
in the sense that they do not break down into the intense
spatiotemporal disorder that is observed after the initiation of
traveling waves or after a sudden change of Rayleigh num-
ber, these patterns do not relax toward an optimum configu-
ration. The pattern is constantly being deformed as rolls
propagate across the cell and the domain boundaries con-
tinue to move as the neighboring domains of traveling waves
compete with each other.

B. Dependence of mature patterns onr

The detailed nature of a mature, multidomain state is very
sensitive to the Rayleigh number. We find that the likelihood
of observing a particular defect structure depends strongly on
the Rayleigh number, although there is no evidence that
there are well defined transitions between different TW pat-
terns. The situation may be analogous to the transition from
phase turbulence to defect turbulence in the one-dimensional
complex Ginzburg-Landau equation, where the apparent
transition corresponds to a rapid but continuous increase in
the density of phase dislocations in the system@31#.

Figure 5 is a diagram showing where the various types of
patterns occur in the bifurcation diagram. The TW branch of
convection is terminated at low Rayleigh number byr s , the
Rayeigh number below which straight rolls become unstable,
which occurs at 1.23. In the range 1.23,r,1.25, labeled
a in Fig. 5, convection tends to be extinguished near domain
boundaries or other defect structures, resulting in holes in the
convection pattern. For 1.25<r,1.30, labeledb in Fig. 5,
the amplitude of the pattern is stable and the domain bound-
aries are most frequently the structures labeled type I in the
inset of Fig. 5. The rolls on either side of the boundary are
roughly perpendicular and the boundary line itself is ap-
proximately parallel to one set of rolls. The rolls parallel to
the boundary always move toward the boundary~i.e., it is a
sink! and the boundary moves in the same direction as these
parallel rolls at a velocity somewhat slower than the roll
propagation velocity. Deviations from this rectilinear con-
figuration of up to 30° are typically observed. In this range
of Rayleigh numbers, the rolls tend to be quite straight and
very neatly ordered patterns are often observed, although the
well defined domains sometimes break down for reasons that
are not apparent. An example of a pattern observed in this
regime is shown in Fig. 6~a!. The pattern contains four
boundaries, two type I boundaries and two poorly organized
boundaries that resemble type I boundaries but contain addi-
tional defects.

If the Rayleigh number is set in the range
1.30,r,1.37, labeledd in Fig. 5, the patterns have a dif-
ferent character. The type I domain boundaries found in re-
gion b still appear, but domain boundaries of type II are also

FIG. 5. Diagram of the convective amplitude as a function of
Rayleigh number. The lettered regions indicate the stability of vari-
ous coherent structures as indicated in the text. The inset shows the
three types of defect structure discussed in the text.
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frequently observed. In the type II boundaries, which are also
called ‘‘zippers,’’ @9# the rolls on either side of the boundary
are approximately parallel, but propagate in opposite direc-
tions. The domain boundary is perpendicular to the rolls, or
if the rolls are not perfectly parallel, the grain boundary tends
to be oriented symmetrically with respect to the rolls. Al-
though the type II boundaries sometimes appear in regimes
a and b, particularly in more disordered patterns, they are
more prevalent and tend to persist longer in regimed. At the
lower Rayleigh number, the rolls on either side of a zipper
glide past each other without any noticeable interaction, but
as the Rayleigh number approaches the upper limit of regime
d there seems to be an increased resistance to the shearing of
rolls along the boundary line. Another difference between
regiond and regionb is that cross-roll patches are prevalent
in the former regime. The cross-roll patches, labeled as type
III in the inset of Fig. 5, have been described above in con-
nection with the disordered state. A typical pattern in region
d is shown in Fig. 6~c!. In this figure, each of the domains is
moving in a counterclockwise orientation and three zippers
separate the three large domains. In addition, a small cross-
roll patch has formed where the three main domains come

together, just to the left of the center of the cell.
If the Rayleigh number is increased further and set in the

rangee, which extends from 1.37 up tor ! at 1.58, type II
domain boundaries are no longer observed. As the Rayleigh
number is increased into this regime, the zipper states, which
are typically present near the center of the cell, become
pinned and an overall rotation of the pattern is observed. An
example of this type of pattern is shown in Fig. 6~d!. The
rolls in all parts of the pattern are moving counterclockwise
along the boundary. If the Rayleigh number were slightly
lower, this might result in a zipper in the center of the cell,
but at this Rayleigh number, the zipper becomes ‘‘stuck’’
and the entire pattern rotates. In this pattern there is visible
strain where the counterpropagating rolls connect. At the
high end of this range of Rayleigh number, such strain is less
evident and the patterns rotate rigidly.

Above r !, the rigid rotation of the pattern stops and sta-
tionary overturning convection is observed. The patterns ob-
served just abover ! are angular, consisting of patches of
straight rolls. As we have reported elsewhere, when the Ray-
leigh number is increased to a high value, the pattern relaxes
to a more curved texture@32#. The curved texture is charac-

FIG. 6. Raw images of mature convection patterns for a variety of Rayleigh numbers:~a! r51.25, ~b! r51.28, ~c! r51.35, and~d!
r51.39. The sense of rotation~see the text! is clockwise for~a! and counterclockwise for~b!–~d!.
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teristic of Rayleigh-Be´nard convection, but the angular tex-
ture only seems to occur nearr ! in the binary fluid system.

Finally, we note one additional regime, labeledc in Fig.
5, which is centered atr51.30 and overlaps with regimes
b andd. Regimec is a range of Rayleigh numbers in which
an enhanced level of the curvature of the rolls is observed.
The curvature is generally such that the divergence of the
velocity vector is positive, except for small regions of nega-
tive divergence, which sometimes appear near the cell
boundary. In this regime, there is also an increased tendency
for orderly domain structures to break down to more disor-
dered patterns. An example of such a pattern is shown in Fig.
6~b!.

It is interesting that of all of the possible configurations of
domain boundaries, only those that we have labeled type I
and type II are frequently observed. Sources of straight rolls
are not observed within the patterns and sinks~i.e., the head
on collision of straight rolls! normally evolve into cross-roll
patches, which we label as type III. Neither the type I nor
type II boundaries appear to have any obvious intrinsic in-
stabilities, although in the course of the evolution of the ma-
ture patterns they can be swept into configurations in which
they are inconsistent with the circular cell boundary and dis-
appear. The instability of zippers predicted by Aranson and
Tsimring @21# was not observed, but zippers tend to be con-
verted into type I boundaries when they interact with the cell
boundary and this limits the lifetime of a zipper to about
200tk in the mature patterns. It is possible that the predicted
instability would manifest itself over longer time scales.

C. The structure of ‘‘zippers’’

The type II domain boundaries, or ‘‘zippers,’’ have a fas-
cinating structure. The rolls on either side of a zipper bound-
ary are perpendicular to the boundary and propagate in op-
posite directions. The configuration is reminiscent of a shear
flow, but without a Kelvin-Helmholtz instability. It should be
kept in mind that the propagation of the convection rolls
does not correspond to a significant mean flow in the fluid.
The convection rolls are really long vortex lines, and at a
zipper boundary, the vortex lines repeatedly disconnect and
reconnect across the boundary as they move past each other.
At low Rayleigh numbers, there is no apparent interaction
between the vortex lines~the convection rolls!, but as the
Rayleigh number is increased, there is a resistance to the
disconnection of the vortex lines, which seems to impede the
movement of the rolls. At Rayleigh numbers above 1.37, the
attraction of the vortex lines is sufficiently strong that they
become pinned and the convection rolls are held in place,
despite their natural tendency to propagate.

In Fig. 7~a!, a sketch of the shadowgraph visualization of
a zipper is shown. In the left panel, the zipper is aligned, and
in the right panel, the rolls on either side of the domain
boundary have propagated byl/4, so that the rolls are out of
phase across the zipper. The bright bars indicate descending
plumes of cold fluid, the dark bars indicate ascending plumes
of hot fluid, and the vortex cores are located between the
dark and bright bars. In Fig. 7~b!, the corresponding fluid
flow is sketched for the aligned and unaligned configurations
of the zipper. In the aligned state, shown in the left panel, the
vortices on either side of the boundary merge together,

whereas in the unaligned state, shown in the right panel,
vortices of opposite sign abut, creating a region of intense
shear at the boundary.

Even when they are aligned, the vortices on either side of
the zipper are not identical. The flow patterns surrounding
the vortices are clearly not the same, since the flows are time
dependent, and the vortices are propagating in opposite di-
rections. In addition, computer simulations of the TW state
indicate that there is a small asymmetry in the ethanol con-
centration of the two rolls of a roll pair@33#. As indicated in
Fig. 7~b!, the right-going traveling waves consist of ethanol-
rich rolls with positive vorticity and water-rich rolls with
negative vorticity, whereas the left-going traveling waves
have the opposite symmetry. When the rolls are aligned, vor-
tices of the same polarity but dissimilar concentration are
matched. At low Rayleigh numbers, the rolls glide past each
other without interaction and the rolls apparently maintain
their dissimilar concentration and detailed flow patterns, ex-
cept for a very narrow region near the domain boundary. At
high Rayleigh numbers, when the vortices become pinned at
the domain boundary, the flow pattern and concentration dif-
ference must gradually change from the right-going to the
left-going symmetry along the vortex lines. In the intermedi-
ate regime, in which the zipper continues to shear but the
motion of the rolls is impeded by resistance to the discon-
nection and reattachment of the rolls, there must be a sub-
stantial region where the concentration and velocity fields
are modified, and the transition to the pinned state presum-
ably corresponds to the growth of this region. It is likely that
it is the action of viscosity or thermal diffusion across the
domain boundary that causes the modification of the fluid
flow near the zipper. The other possibility, that diffusion of
ethanol across the boundary modifies the concentration field,

FIG. 7. ~a! Representation of the shadowgraph visualization of a
zipper in its aligned and unaligned configuration.~b! Sketch of the
flow pattern of the zipper.W andE represent water and ethanol-rich
rolls, respectively.

53 5923DYNAMICS OF TWO-DIMENSIONAL TRAVELING-WAVE . . .



is not plausible because the time scale for mass diffusion in
the liquid is too long.

V. EXTRACTION OF THE COMPLEX ORDER
PARAMETER

In the analysis of stationary convection patterns, it is nor-
mally sufficient to analyze a single snapshot of the pattern to
determine its state at a given moment. Fourier transform
techniques can be used to measure the spectral content of the
pattern@34# and heuristic algorithms can be used to measure
local properties of the pattern such as the wave number or
curvature@5#. In the case of traveling-wave patterns, the state
of the pattern cannot be obtained from a single frame. From
a practical point of view, it is necessary to determine the
propagation velocity as well as the configuration of the con-
vection rolls to specify the pattern. If the system is analyzed
in terms of a model equation, then the visible pattern is in-
terpreted as the real part of the complex order parameter and
the imaginary part manifests itself only after the system has
evolved for a coherence time. An algorithm is needed that
can capture the kinematic properties of the traveling-wave
patterns to facilitate description of the phenomena and com-
parison with analytical models.

For one-dimensional traveling-wave or oscillatory pat-
terns, a very effective analysis technique known as complex
demodulation may be used. The idea is to assume that the
field can be written as a superposition of counterpropagating
waves of the form

A~x,t !5AR~x,t !cos@kx2vt1fL~x,t !#

1AL~x,t,!cos@kx1vt1fR~x,t !#, ~6!

whereAL andAR are slowly varying envelopes andfL and
fR are phase modulations that represent local wave number
variations in the pattern. By calculating the inner product of
the data with the spatiotemporal carriers for left- and right-
going waves and by making use of the assumption that the
data have a narrow spectral content centered on the carrier
frequencies, it is possible to demodulate the field and extract
the amplitude and phase of the left-going and right-going
components@35#. Unfortunately, this technique cannot be di-
rectly extended to two-dimensional traveling-wave patterns
because a spatial carrier with a distinct wave vector cannot
be found. Although the modulus of the wave vector observed
in a two-dimensional pattern is restricted to a narrow range
of values, the orientation of the rolls is arbitrary. Therefore
the distributions ofkx andky are broad and the demodulation
in x andy cannot be performed.

Below, we describe an algorithm that is similar to com-
plex demodulation in that a complex amplitude is extracted
from the pattern, but is flexible enough to capture the com-
plex spatial structure of two-dimensional TW patterns. The
basis of the algorithm is the fact that, despite the complex
spatial structure of the TW patterns, the time series of a
typical point in the pattern is periodic and has a narrow fre-
quency spectrum. Regular oscillations are observed within
domains of traveling waves and the passage of point defects
or grain boundaries merely causes phase dislocations in the
oscillations. The domain boundaries move slowly compared
with the roll propagation velocity, so in a sequence of frames

corresponding to a few oscillations of the pattern, only a
small fraction of the pixels making up the image are affected
by the domain boundaries and the rest execute periodic os-
cillations. Therefore, at a given instant of time, a mature
pattern, such as those shown in Fig. 6, can be modeled as an
ensemble of oscillators, one for each pixel in the image, and
a description of the pattern consists of the specification of the
complex amplitude and frequency of oscillation of each
pixel. The complex amplitude as a function of position
A(x) is essentially the complex order parameter of the pat-
tern. In the large domains of the mature TW patterns, the
modulus ofA(x) is found to be approximately constant in
time and space so the pattern’s spatial structure is contained
almost entirely in the phasef(x) defined by

A~x!5iA~x!ieif~x!. ~7!

The instantaneous time evolution of the pattern consists of
the evolution off(x) and is determined by the frequency
field v(x) since

]f~x!

]t
U
t5t0

5v~x!. ~8!

In the immediate vicinity of the domain boundaries a super-
position of wave components is expected and interference
can cause significant modulation ofiA(x)i . In these areas,
the pattern cannot be described by the phase alone and the
algorithm described below will not give complete informa-
tion.

In order to calculate the amplitude and phase fields that
characterize the pattern at a given instant in time, a sequence
of frames corresponding to approximately 5–10 oscillation
periods is selected. The sampling rate of the data is typically
10–20 samples per oscillation period, so about 100 frames
are normally used. The time seriesan of each pixel in the
image is multiplied by a smooth window function
en5sin(np/N), whereN is the total number of points, and
then Fourier transformed. The frequency of each pixel is
defined as the peak value of the Fourier power spectrum.
Since the time series contains only a few oscillations of the
signal, the relative width of the peak in the Fourier spectrum
is large, but this does not necessarily prevent the frequency
from being determined with high accuracy. If we assume that
the input signal is a pure sine wave, then the Fourier trans-
form of a short section of the signal is a wide peak centered
on the carrier frequency and, in principle, a Fourier trans-
form algorithm can still be used to find the center of the peak
with arbitrarily high precision. In practice, a precise determi-
nation of frequency is not meaningful if the signal to be
sampled has a broad frequency spectrum and noise will limit
the precision with which frequencies can be measured. The
goal is to configure the Fourier transform algorithm to have
sufficiently high resolution so that the accuracy of the fre-
quency measurement is limited by the properties of the sig-
nal and not by the Fourier transform algorithm itself. The
quality of the frequency determination can then be estimated
from the quality of the result.

The standard fast Fourier transform~FFT! algorithm does
not give adequate resolution when applied directly to the
data sets. In order to get a sufficiently accurate transform, the
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data are first padded with zeros to 8 times its original length,
which increases the density of points in the FFT spectrum by
a corresponding factor. After a preliminary estimate of the
frequency has been made based on the padded FFT output, a
standard discrete Fourier transform is used to trace out the
peak of the spectrum to whatever accuracy is desired.

Once the frequency has been found for each pixel, the
complex amplitude is calculated by evaluating the inner
product between the data and the Fourier component

A~x!5
1

pE2T/2

1T/2

Ax~ t !e
ivtdt5 (

n50

N21

anene
iv~n2N/2!, ~9!

whereAx(t) is the windowed time series data of the pixel at
location x, defined such thatt50 corresponds to the mid-
point of the sequence of frames. It is very important that the
time origin be chosen in this way; otherwise, the phase of
A(x), which specifies the spatial pattern, will be very sensi-
tive to noise in the determination ofv(x). For this choice of
the time origin, the coupling of the phase tov(x) is zero to
first order.

Once the complex amplitude has been calculated, it is
convenient to calculate the phase mapf(x), from which all
of the properties of the pattern are subsequently derived. Ma-
nipulation of the phase presents some numerical difficulties.
If the phase is stored as a real number in the domain
(2p,p), calculations of phase differences across the dis-
continuity at6p require special processing, which is awk-
ward to implement. Storing an absolute phase is not possible,
since topological defects in the pattern make it impossible to
assign the phase everywhere in a consistent manner. It is
convenient to store the phase as a signed 16-bit integer so
that the interval (2p,p) maps to (232 768,32 768). In this
case, signed integer arithmetic on the phase gives the correct
phase difference in all cases.

As an illustration of this technique, 128 frames centered
on the pattern shown in Fig. 6~a! were analyzed and the
results are shown in Fig. 8. A frame was recorded every 15
sec, so the sequence covers 1920 sec, which corresponds to
15tk , or 9 oscillation periods of the traveling-wave state. In
order to prepare the data for analysis, each frame was first
divided by a reference image taken withr,r s in order to
compensate for nonuniformity in the shadowgraph illumina-
tion, then each frame was subject to a mild low-pass spatial
filter in order to suppress broadband noise and superfluous
fine scale structure in the image, such as sharp features as-
sociated with concentration gradients in the fluid layer@36#.
Finally, the complex amplitude, phase, and frequency fields
were calculated.

In Fig. 8~a!, the phase of the complex amplitude is
mapped to gray scale using a sawtooth function. A compari-
son with Fig. 6~a! indicates that the phase field gives a very
clean representation of the pattern and resolves the ambigu-
ity of the direction of propagation of the rolls. Figure 8~b!
showsiAi , the amplitude of oscillation as a function of po-
sition. Within the large domains,iAi is nearly constant, jus-
tifying the assumption that the pattern is determined mainly
by the phase. As expected, some modulation ofiAi is ob-
served at the domain boundaries where the wave fields over-
lap. The frequencyv(x) is shown in Fig. 8~c!. It is interest-
ing that the frequency varies widely over the pattern. The

frequency near the domain boundaries at the center of the
cell is more than a factor of 2 smaller than it is near the cell
boundary. Clearly, the domain boundaries have a profound
influence on the TW state, despite the fact that most of the
pattern consists of straight rolls.

The remaining three panels in Fig. 8 show quantities that
are derived fromf(x). Since the pattern consists mainly of
waves, it is convenient to rewrite the phase in the form

f~x!5k~x!•x. ~10!

Herek(x) is the local wave vector, which is easily extracted
from the phase map using

k~x!5“f~x!. ~11!

Writing k5n̂k, we can evaluate the modulus of the wave
vectork and the unit vectorn̂, which is normal to the rolls
and points in the direction of propagation. A map of the
wave numberk is shown in Fig. 8~d!. The gray scale is
chosen to have high contrast in order to make the small
variations in wave number visible. The algorithm gives ac-
curate measurement of the wave number with very high spa-
tial resolution, even in fairly close proximity to grain bound-
aries and defects. The stripes that are visible in the wave
number maps at the domain boundaries themselves indicate
areas where significant overlap of waves occurs. Point sin-
gularities in the wave number that are expected near dislo-
cations in the pattern are transformed into short line singu-
larities, corresponding to the trajectories of the defects
during the sequence of frames. Nevertheless, the calculated
wave number is accurate in the neighborhood of the defect,
except for the immediate vicinity of the singularity, where
the wave number is not well defined. As expected, the wave
number, normalized to the cell height, is narrowly peaked at
p. There are some broad areas of slightly compressed or
dilated rolls, but the variation of the wave vector over the
pattern is much smaller than the variation observed in the
frequency. The angle betweenn̂ and the horizontal axis is
shown in Fig. 8~e!.

Also of interest is the curvature, shown in Fig. 8~f!, which
is calculated using the expression

c~x!5“•n̂. ~12!

The curvature is a second derivative of the phase field and so
the high-frequency noise that is visible in the wave number
field is further amplified. In order to reduce this noise, the
divergence in Eq.~12! is calculated over a span of 8 pixels
rather than from adjacent pixels. This has the effect of sup-
pressing the high-frequency noise while maintaining a reso-
lution of about one cell height. Sincen̂ points in the direction
of propagation, Eq.~12! assigns a positive curvature to rolls
that diverge and negative curvature to rolls that converge,
resolving the ambiguity that is present in stationary patterns.
The data of Fig. 8~f! indicate a pervasive weak positive cur-
vature, with small regions of strong positive curvature near
domain boundaries and some small areas of negative curva-
ture near the cell boundary.

The same analysis was also applied to the pattern pre-
sented above in Fig. 6~c! and the results are shown in Fig. 9.
This pattern was recorded atr51.35 and is organized around
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three type II~zipper! boundaries, which are often seen at this
value of r . The six panels of Fig. 9 correspond to those of
Fig. 8, although it has been necessary to change some of the
scales in order to accommodate the data. The variation of the

frequency is qualitatively the same, with smaller values near
the domain walls, although the overall frequency is lower at
this value ofr and the relative variation is not quite as large
as in Fig. 8. The conclusion is that oscillation frequency is

FIG. 8. Analysis of the pattern shown in Fig. 6~a!, recorded atr51.25:~a! phase,~b! modulusiAi , ~c! frequencyv(x), ~d! wave number
iki , ~e! direction tan21(ky /kx), and~f! curvature“•n̂. Where applicable, numerical limits for the gray scales are shown below the images.
The small spot to the left of center in panel~d! results from an optical defect in the visualization system.
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reduced near the zippers, even though for this value ofr , the
zippers appear to move freely. The direction map clearly
differentiates the zipper boundaries and the curvature plot
also exhibits a pervasive positive curvature with regions of

intense curvature that are somewhat more prominent at
r51.35 than atr51.25.

Finally, in Fig. 10 an analysis of the more disordered
pattern presented above in Fig. 4~c! is shown. This pattern

FIG. 9. Analysis of the pattern shown in Fig. 6~c!, recorded atr51.35: ~a! phase,~b! modulus,~c! frequency,~d! wave number,~e!
direction, and~f! curvature. Where applicable, numerical limits for the gray scales are shown below the images.
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represents a state that is intermediate between the intense
disorder of the initiation of TW convection and the domains
of nearly straight rolls in the mature patterns. The pattern has
not yet reached a state of uniform rotation and not all do-

mains are in contact with the cell boundary. The frequency
has a fairly large spread with high values where rolls move
along the boundary and low values near sources of rolls,
whether they are at the interior of the pattern or at the bound-

FIG. 10. Analysis of the pattern shown in Fig. 4~c!, recorded atr51.28 during the initial development of a pattern:~a! phase,~b!
modulus,~c! frequency,~d! wave number,~e! direction, and~f! curvature. Where applicable, numerical limits for the gray scales are shown
below the images.
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ary. As in the mature patterns, the wave number does not
vary widely. As expected, more overlap of waves is observed
in this pattern than in the more ordered patterns.

In Fig. 11, the distributions of frequency and wave num-
ber are shown for the mature patterns atr51.25 and
r51.35. In both cases, the spread of frequencies is substan-
tial, while the wave number is sharply peaked. This is in
sharp contrast to the results for one-dimensional patterns,
where the frequency and wave number both vary widely and
maintain a well-defined dispersion relation@18#. In Fig. 12,
the joint distributions of wave number and frequency are
shown for the data atr51.25 andr51.35. In both cases, the
correlation between frequency and wave number is weak and
bears no resemblance to the dispersion curves that are ob-
served in the one-dimensional system. Consideration of the
frequency maps of Figs. 8~c! and 9~c! and of the distribution
functions in Fig. 12 indicates that the TW frequency at a
given point in the two-dimensional patterns is strongly cor-
related with defect structures in the immediate neighbor-
hood, but not strongly correlated with the local wave num-
ber.

VI. DEFORMATION OF TRAVELING-WAVE PATTERNS

In the preceding section, we discussed how it is possible
to obtain a complex amplitude field that describes the state of
a traveling-wave pattern. Each point in the field is repre-
sented as an oscillator with a specified complex amplitude
and frequency. The spatial pattern, including information

about the direction of propagation of waves, is determined
by the relative phases of the oscillators and the evolution of
the pattern in time corresponds to the rotation of the complex
amplitudes at well defined frequencies. By examining the
relationship between the phase and frequency fields, it is
possible to characterize the rate of deformation of the pattern
at a given instant.

It is clear that a region of the pattern can only evolve
without deformation if the frequency of oscillation is the
same throughout the region. If the oscillation frequency is
different at two points in the pattern, then a different number
of rolls will pass these points in a given time interval and the
pattern will be deformed. The nature of the local deformation
depends on the relationship between the gradient of the fre-
quency field“v and the direction of propagationn̂. If n̂ and
“v are parallel in a region of the pattern, then the frequency
is higher for rolls leaving the region than for rolls entering
the region and the pattern will be subject to a local stretch-
ing. If n̂ and“v are antiparallel, then the opposite is true
and the pattern will be locally compressed. Similarly, ifn̂ is

FIG. 11. Distribution functions for~a! the frequency and~b! the
wave number. The unit of distance is the cell height and the unit of
time is the vertical thermal diffusion timetk5124 sec. White
circles are data atr51.25 from Fig. 8 and gray squares are data at
r51.35 from Fig. 9.

FIG. 12. Distribution of wave number and frequency for~a! a
mature pattern recorded atr51.25 and~b! a mature pattern re-
corded atr51.35.
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perpendicular to“v, then more rolls will pass on one side
of the region than on the other and the pattern will twist
locally.

The stretching of the pattern can be determined by evalu-
ating the stretch function

S~x!5
1

2pk
“v•n̂, ~13!

where a positive value indicates stretching and a negative
value indicates compression. Similarly, the twisting of the
pattern is specified by the twist function

T~x!5
1

2pk
“v3n̂, ~14!

where a positive value indicates counterclockwise rotation
and a negative value indicates clockwise rotation. Another
straightforward way to combine frequency and phase infor-
mation is to evaluate the phase velocity, which is defined by
v5v/k.

In Fig. 13, the twist and stretch functions are shown for
the data atr51.25. The gray scale is defined so that black
corresponds to a negative value of the variable, white corre-
sponds to a positive value, and neutral gray~the field back-
ground! corresponds to zero. The units of stretch and twist
are the same and the gray scales are scaled identically in the
stretch and twist plots. Figure 13~a! indicates a dominant
clockwise twist of the convection rolls in the pattern. The
clockwise twist of the rolls corresponds with the clockwise
global rotation of the pattern and is a manifestation of the
fact that the propagation velocity is larger at the cell bound-
ary than it is near the center of the pattern. The stretch func-
tion, in contrast, appears to be indistinguishable from zero
over the entire pattern except for the domain boundaries
themselves, which the algorithm identifies as areas of violent
deformation. The absence of significant stretching or com-
pression is consistent with the narrow wave number distribu-
tion of the pattern. In Fig. 14, the twist and stretch functions
are shown for the corresponding data atr51.35. The general
properties are the same. Counterclockwise twisting of the
pattern is prominent and consistent with the counterclock-
wise global rotation of the pattern. Stretching is negligible

FIG. 13. Deformation of the pattern atr51.25: ~a! twist
1
2pk“v3n̂ and ~b! stretch 1

2pk“v•n̂. Distance is in units of cell
height and time is in units oftk5124 sec.

FIG. 14. Deformation of the pattern atr51.35: ~a! twist
1
2pk“v3n̂ and~b! stretch1

2pk“v•n̂. Distance is in units of cell
height and time is in units oftk5124 sec.
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except for a few narrow areas associated with defects or
domain walls.

Finally, the roll velocity is represented in Figs. 15 and 16.
In these plots, the brightness of the field indicates the pattern

and the shading indicates the velocity. Yellow rolls are mov-
ing slowly and blue rolls are moving rapidly, with gray cor-
responding to an intermediate value. In this plot, the slow
propagation speed in the vicinity of both type I and type II
domain boundaries is evident.

VII. DISCUSSION

A. Traveling-wave analysis algorithm and comparison
with analytical models

If we compare a traveling-wave pattern with the pattern
observed one coherence time later, every pixel in the pattern
will have changed, although the significant coherent struc-
tures, the domain walls and local deformations of the waves,
will have changed very little. An important goal in analyzing
traveling-wave patterns is to separate the evolution of the
structure of the pattern from the simple propagation of
waves. The algorithm described above is intended to fulfill
this goal. It takes advantage of the incessant oscillation of the
pattern to generate separate representations of the phase and
amplitude of the traveling waves and the frequency field
gives a measurement of the ‘‘velocity’’ of the pattern, mak-
ing it possible to characterize the instantaneous rate of defor-
mation. This algorithm also has the advantage of being able
to measure the direction of propagation and wave number in
close proximity to defect structures, which is useful in study-
ing the domain walls that appear to control the evolution of
the pattern.

The most obvious use of this technique is to measure the
kinematic properties of a TW pattern, but we anticipate that
it will also be useful in making comparisons with model
equations. In pure fluids, the patterns relax toward an opti-
mum configuration and the criterion for a successful model is
that it is able to replicate the stable configuration, including
its basin of attraction and secondary instabilities. Strictly
speaking, in TW patterns, there is no stable configuration and
an effective means of comparison would instead be to use an
observed configuration as an initial configuration for the
model equation and see if the model reproduces the kine-
matic properties of the system such as the frequency field.

Although the algorithm is very successful in analyzing the
mature patterns, it has some limitations. It is much less use-
ful in studying the disordered patterns where there is a high
density of defects. Also, the analysis techniques for extract-
ing wave number and other properties depend on the as-
sumption that the pattern consists of a single wave with
phase deformations and therefore it is not able to describe the
counterpropagating waves observed in small amplitude states
or near domain boundaries.

There are some obvious extensions of this algorithm,
which are planned to be the subject of future work. One
possibility is to perform a complex demodulation of each
pixel in order to evaluate the deformation of the phase field
as a function of time. Another is to simply let the pattern
propagate forward in time by letting each complex amplitude
continue to rotate at the measured frequency. This can be
compared with the actual evolution of the pattern to deter-
mine the ‘‘acceleration’’ of the pattern. Finally, the superpo-
sition of waves near domain boundaries may be studied by
performing a full three-dimensional complex demodulation
of the wave field in the vicinity of a domain wall.

FIG. 15. Color plot of velocity atr51.25 in units ofh/tk ,
whereh is the cell height. The velocity is encoded as the hue of the
pattern.

FIG. 16. Color plot of velocity atr51.35 in units ofh/tk ,
whereh is the cell height. The velocity is encoded as the hue of the
pattern.

53 5931DYNAMICS OF TWO-DIMENSIONAL TRAVELING-WAVE . . .



B. Quenching of disorder and the transition
to a rotating TW pattern

When traveling-wave convection is initiated, especially if
the transition to the TW state occurs via a rapid change of the
Rayleigh number, a highly disordered state is first created
that consists of defect structures and areas of traveling waves
that are only a few wavelengths in extent. At this stage the
central area of the TW pattern seems to evolve without
strong interaction with the system boundary. During the sub-
sequent evolution of the pattern, there is an overall trend
toward an increase in the domain sizes until the average do-
main size is of the order of the convection cell and the cell
boundaries become a strong influence on the pattern. Typi-
cally, there is an intermediate stage of the evolution of the
pattern in which well defined domains are observed that are
not in contact with the cell boundary, such as the pattern
shown in Figs. 4~c! and 10.

The increase in domain size seems to be associated with
three separate mechanisms. There is a tendency for the small
domains embedded in the pattern to become more organized
over time, creating larger domains; sources at the system
boundary begin emitting waves that tend to sweep the disor-
der away, as in Fig. 4~d!, and waves propagating along the
system boundary can grow, encroaching on the disordered
patterns, as in Fig. 4~b!. The progression is not steady, or
monotonic, as ordered structures frequently become destabi-
lized and break down before a mature multidomain pattern
finally forms.

An interesting question is whether the decrease in the dis-
order and the associated increase in the average domain size
in the traveling-wave system is analogous to the domain
coarsening that has been studied experimentally and theoreti-
cally in rotating Rayleigh-Be´nard convection@37,38#. In the
rotating system, in which there are no traveling waves, the
growth of domains seems to be an intrinsic property of the
pattern dynamics, whereas in binary fluid convection the
boundary apparently plays an important role in the trend to-
ward larger domains. A more appropriate context for under-
standing the behavior of the TW patterns may be the sce-
nario described by Aranson, Levine, and Tsimring, in which
a source can emit stable waves that sweep chaotic fluctua-
tions to the system boundary@30#. This mechanism works
even if the waves are unstable, as long as it is a convective
instability so that chaotic fluctuations cannot backpropagate
to the source point. Preliminary observations suggest that the
increase in order observed in our experiment proceeds along
these lines, although the situation is complicated by the fact
that the sources are not stable over long periods of time.

It is also striking that the mature patterns always have a
well defined sense of rotation, with rolls attached to the cir-
cular cell boundary moving in the same direction. The direc-
tion of rotation varies from run to run, but once established,
never reverses itself during a run. Oddly enough, if we were
only to look at the rolls attached to the cell boundary, we
would see them orbit the cell much as they do in one-
dimensional experiments performed in an annular convection
cell, and there appears to be a strong analogy between these
systems@39#. The structure of the center of the pattern can be
interpreted as reflecting the need for the pattern to satisfy
several inconsistent conditions. These conditions are that the
roll orientation at the edge of the pattern is perpendicular to

the boundary, that the rolls remain straight with a wave-
length equal to twice the cell height, and that the rolls main-
tain a uniform propagation velocity. At low Rayleigh num-
ber, shearing of the rolls at domain boundaries in the center
of the pattern makes it possible for all three conditions to be
approximately fulfilled, and as we have shown above in Sec.
IV, the detailed configuration of these domain boundaries
depends sensitively on the Rayleigh number. At higher Ray-
leigh numbers, nearr ! on the TW branch, the rolls become
pinned at the internal domain boundaries and the condition
of uniform propagation velocity is violated as the pattern
rotates rigidly. At the edge of the pattern adjacent to the
system boundaries traveling-wave convection is maintained,
but the propagation velocity at the center of the pattern goes
to zero.

The rotation of the TW patterns is obviously related to the
twist function @Eq. ~14!#, which is plotted above in Figs.
13~a! and 14~a!. As expected, the direction of twisting of the
mature patterns atr51.25 andr51.35 corresponds with the
sense of rotation of the pattern. It is informative to make a
quantitative comparison of the rate of twisting with the rate
at which rolls orbit the cell at the system boundary for data at
r51.25. As can be determined from Fig. 15, the rolls at the
boundary propagate at a velocity of 1.2d/tK and therefore
require about 140tK , or 5 h, to complete one orbit of the
convection cell. In the large domains the mean value of the
twist function, shown in Fig. 13~a!, is T50.0035tK

21 . The
amount of time required for twisting rolls to undergo one
rotation is 1/T, and this implies that about 285tK , or 10 h, is
required for a domain of rolls to complete one rotation. The
twisting rate is therefore only half that which would be ob-
served in a rigidly rotating pattern. The twisting rate also
corresponds with the observed rate of precession of the in-
ternal domain boundaries, since the domain boundaries
maintain a fixed orientation with respect to the roll convec-
tion rolls.

Using the basic pattern observed in Fig. 8 as a guide, it is
useful to consider two limiting cases of how the pattern can
rotate in the presence of domain boundaries. One limit is that
the domain boundaries remain stationary, with rolls in each
domain being created at a source near the cell boundary and
being annihilated at the internal domain boundary, as shown
in Fig. 17~a!. In this case, the twist function for the pattern is
zero and the propagation velocity is uniform. In the other

FIG. 17. Schematic representation of the hypothetical move-
ment of domains in a TW convection pattern. In~a! the domains are
stationary and the twist function is zero and in~b! the pattern rotates
rigidly and the twist function corresponds to the rate at which rolls
attached to the boundary are observed to orbit the cell.
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limit, the entire pattern rotates and the domain boundaries
are advected with the convection rolls as they orbit the cell,
as shown in Fig. 17~b!. In this case no rolls are created or
annihilated; the rate of twisting is simply equal to the rate at
which rolls at the boundary orbit the cell and the roll velocity
is proportional to the distance from the center of the pattern.
Crudely speaking, the fact that the rolls within the domains
are twisting half as fast as the rate at which rolls orbit the cell
indicates that the observed evolution of the pattern is half-
way between a rigidly rotating pattern of Fig. 17~b! and the
stationary array of domains of Fig. 17~a!. Viewed from a
reference frame that rotates at the roll twisting rate, the pat-
tern would appear like Fig. 17~a!, with zero twist and sta-
tionary domain boundaries. In this rotating frame, the rolls
propagate at a uniform velocity equal to the velocity ob-
served at the center of the cell in the laboratory frame.

C. Failure of dispersion relations

It is very interesting that the TW patterns, especially at
r51.25, have a very broad distribution of frequency but a
narrow distribution of wave number~see Fig. 11!. In previ-
ous work on one-dimensional TW states, wave number and
frequency both varied substantially but maintained a well
defined dispersion relation, which does not seem to be con-
sistent with the data shown in Fig. 12. The narrow wave
number distribution is probably related to the fact that rolls
are created and annihilated freely at the domain boundaries
and the wave number remains within the Eckhaus stable
band. The broad distribution of frequency is suprising under
these circumstances.

The results presented above seem to indicate that the fre-
quency is strongly correlated with the presence of defects in
some finite neighborhood. Presumably the frequency is also
related to the wave number, but this relationship does not
manifest itself because the wave number is narrowly distrib-
uted. It is doubtful that such a complicated dependence of the
frequency on the pattern could be obtained from a simple
model, such as the Swift-Hohenberg equation, which de-
pends only on the local properties of the patterns and obeys
a strict dispersion relation. Probably the inclusion of nonlo-
cal terms or an additional field would be necessary to repro-
duce the behavior of the physical system.

A possible physical explanation for the anomalous fre-
quency distribution is that the disordered flow patterns that
are present in the defects upset the ethanol concentration
field in the vicinity of the defect. It is known that mean flows
are associated with defect structures in stationary convection
@40# and similar effects in the mixture could pump ethanol
into or out of various regions of the pattern or upset the

delicate concentration gradients in nearby convection rolls. If
this were the case, the effective separation ratio would not be
constant, but would vary in time and space as the defect
structures evolve. The properties of the traveling-wave state
are very sensitive to the ethanol concentration gradients and
it is not hard to imagine that the traveling-wave velocity
could be significantly affected in such a situation.

VIII. CONCLUSION

One primary result of this paper is a survey of the prop-
erties of two-dimensional traveling-wave convection patterns
in a large aspect ratio cylindrical container. We have de-
scribed the transition from a disordered initial state to a well
organized pattern consisting of several domains of traveling
waves and we have discussed the dynamics of the domain
boundaries, which are the primary features of the mature
patterns. We have found that the prevalence of these bound-
aries and the general character of the TW patterns is quite
sensitive to Rayleigh number. The second important result is
an algorithm that allows the extraction of the complex order
parameter and frequency field from experimental convection
patterns. The complex amplitude describes the instantaneous
configuration, including information about the direction of
propagation of waves, and the frequency field gives the in-
stantaneous rate of propagation and deformation in the pat-
tern. We have used this algorithm to investigate the basic
kinematic properties of the mature TW patterns.

It is found that the patterns have a very broad distribution
of frequency, but a narrow distribution of wave number,
which seems to be at odds with previous work on one-
dimensional patterns and with the standard model equations.
Some of the properties observed in our system, such as the
global rotation of patterns, are clearly related to the cylindri-
cal geometry of the cell, while others, such as the transition
from disordered to ordered patterns, are probably indepen-
dent of the geometry. Future goals of this work are a detailed
comparison of the evolution of TW patterns with analytical
models and investigation of patterns in other geometries and
at higher aspect ratio.
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